Mammalian bombesin receptors are coupled to multiple signal transduction pathways in pancreatic acini.

نویسندگان

  • Hirokazu Nishino
  • Yasuhiro Tsunoda
  • Chung Owyang
چکیده

We investigated the structural requirements for bombesin (BB)-like peptides to stimulate amylase secretion in rat pancreatic acini and examined the responsible intracellular signal transduction pathways. The tetradecapeptide BB-(1-14) was a full agonist, whereas the heptapeptide BB-(8-14) did not evoke amylase secretion. The mammalian BB analog neuromedin C decapeptide [NMC-(5-14)] was as potent as BB-(1-14) in stimulating amylase secretion, suggesting that Gly5-Asn6-His7(or Gln7) of the COOH-terminal decapeptide are essential amino acids for full biological activity. BB and NMC equipotently stimulatedd- myo-inositol 1,4,5-trisphosphate production, which was inhibited by the phospholipase C (PLC) inhibitor U-73122. BB and NMC also stimulated protein tyrosine kinase (PTK) activities. The half-maximal effective concentration (EC50) for NMC-activated PTK was 2 log units less than the EC50 for BB-activated PTK. NMC was 10-34 times more potent than BB in increasing leukotriene C4 (an index of arachidonic acid production). The production of leukotriene C4 was inhibited by the phospholipase A2(PLA2) inhibitor ONO-RS-082. NMC is structurally homologous to BB-(5-14) except that Gln7 in BB is replaced by His7 in NMC. Therefore, substitution of Gln7 for His7 may alter the signal transduction systems to include the PTK and PLA2 pathways. U-73122 inhibited Ca2+ spiking and amylase secretion induced by NMC and BB. However, the PTK inhibitor genistein and the PLA2 inhibitor ONO-RS-082 inhibited secretion induced by NMC but not that induced by BB. In contrast to nonmammalian BB receptors, which primarily use the PLC pathway, the rat BB receptor is linked to three different signal transduction systems: PLC, PTK, and PLA2 pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The roles of EPIYA sequence to perturb the cellular signaling pathways and cancer risk

Abstract It was shown that several pathogenic bacterial effector proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III or IV secretion system, where they undergo tyrosine phosphorylation at the EPIYA sequences, which triggers interaction with multiple host cell SH2 domain-containing proteins and thereby...

متن کامل

The Jak-Stat Signaling Pathway of Interferons System: Snapshots

Interferons (IFNs) are a family of small regulatory glycoproteins that play a central role in the defense against viral infections. Although IFNs have been initially discovered as antiviral factors, today they are known as an integral part of the cytokine network that affect a wide range of biological processes. IFNs exert their pleiotropic effects through their multisubunit cell surface recept...

متن کامل

JAK-STAT pathway and JAK inhibitors: a primer for dermatologists

Background: All cellular events depend upon the DNA synthesis and gene expression involving complex interplay between ligands such as interleukins and interferons, with various cell membrane receptors. These ligand-receptors interactions transmit signals within the cell via numerous signal transduction pathways to affect gene expression. Janus kinase/signal transducer and activator of transcrip...

متن کامل

Signal transduction in human pancreatic cancer: roles of transforming growth factor beta, somatostatin receptors, and other signal intermediates.

Pancreatic cancer is a devastating disease because of the lack of early detection markers and effective treatments. It is the fourth leading cause of cancer-related death in western countries, including the United States. The mechanisms of pancreatic cancer progression remain unknown. Transforming growth factor beta (TGF-beta), a multifunctional cytokine, regulates cell growth and differentiati...

متن کامل

Protein tyrosine phosphorylation in pancreatic acini: differential effects of VIP and CCK.

Cholecystokinin (CCK) and vasoactive intestinal peptide (VIP) stimulate enzyme secretion from pancreatic acini by binding to heptahelical receptors without intrinsic tyrosine kinase activity. Signal transduction by the CCK receptor involves activation of phospholipase C by Gq proteins and activation of tyrosine kinases, whereas occupation of VIP receptors stimulates adenylyl cyclase through bin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 274 3  شماره 

صفحات  -

تاریخ انتشار 1998